Hydrodynamic simulations of self-phoretic microswimmers.

نویسندگان

  • Mingcheng Yang
  • Adam Wysocki
  • Marisol Ripoll
چکیده

A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent, and combines stick boundary conditions with colloid-solvent potential interactions. Asymmetric and specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic interactions with a decay of 1/r(2), which is similar to the decay of gradient fields generated by self-phoretic particle, and can be characterized as pullers or pushers. In contrast, Janus particles are characterized by short range hydrodynamic interactions with a decay of 1/r(3) and behave as neutral swimmers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical density functional theory for microswimmers.

Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a ...

متن کامل

Diffusion of chiral Janus particles in a sinusoidal channel

We investigated the transport diffusivity of artificial microswimmers, a.k.a. Janus particles, in the absence of external biases. We considered the case of chiral Janus particles moving either in the bulk or in sinusoidal channels with reflecting walls. Their self-diffusion constants turned out to depend on both the strength and the chirality of the self-propulsion mechanism. More importantly, ...

متن کامل

Emergent behavior in active colloids

Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk ...

متن کامل

Hydrodynamic capture of microswimmers into sphere-bound orbits.

Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particl...

متن کامل

Bimetallic Microswimmers Speed Up in Confining Channels.

Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 10 33  شماره 

صفحات  -

تاریخ انتشار 2014